Quantitative analysis of nanoparticle internalization in mammalian cells by high resolution X-ray microscopy
نویسندگان
چکیده
BACKGROUND Quantitative analysis of nanoparticle uptake at the cellular level is critical to nanomedicine procedures. In particular, it is required for a realistic evaluation of their effects. Unfortunately, quantitative measurements of nanoparticle uptake still pose a formidable technical challenge. We present here a method to tackle this problem and analyze the number of metal nanoparticles present in different types of cells. The method relies on high-lateral-resolution (better than 30 nm) transmission x-ray microimages with both absorption contrast and phase contrast -- including two-dimensional (2D) projection images and three-dimensional (3D) tomographic reconstructions that directly show the nanoparticles. RESULTS Practical tests were successfully conducted on bare and polyethylene glycol (PEG) coated gold nanoparticles obtained by x-ray irradiation. Using two different cell lines, EMT and HeLa, we obtained the number of nanoparticle clusters uptaken by each cell and the cluster size. Furthermore, the analysis revealed interesting differences between 2D and 3D cultured cells as well as between 2D and 3D data for the same 3D specimen. CONCLUSIONS We demonstrated the feasibility and effectiveness of our method, proving that it is accurate enough to measure the nanoparticle uptake differences between cells as well as the sizes of the formed nanoparticle clusters. The differences between 2D and 3D cultures and 2D and 3D images stress the importance of the 3D analysis which is made possible by our approach.
منابع مشابه
Template synthesis and characteristics of nanoparticle MgO
Oxide nanoparticles can exhibit unique physical and chemical properties due to their limited size and a high density of corner or edge surface sites. In this study, MgO nanoparticle was synthesized using Mg(CH3COO)2 and hexamethylenetetramine as starting materials. The structure and optical properties of these particles are investigated by using X-ray diffraction (XRD), sc...
متن کاملTemplate synthesis and characteristics of nanoparticle MgO
Oxide nanoparticles can exhibit unique physical and chemical properties due to their limited size and a high density of corner or edge surface sites. In this study, MgO nanoparticle was synthesized using Mg(CH3COO)2 and hexamethylenetetramine as starting materials. The structure and optical properties of these particles are investigated by using X-ray diffraction (XRD), sc...
متن کاملRadiosensitization effect of ZnO nanoparticles in lung cancer cells at clinically relevant megavoltage energy
Introduction: Radiation therapy is one of the major modalities that have long been used in cancer treatment. Radiotherapy is often accompanied by early and late toxicity and side effects and narrow therapeutic window. Similarity in radiation absorption properties of tumors and neighboring healthy tissues is often the reason for low specificity of radiation therapy. Development ...
متن کاملSynthesis and Surfactant Effect on Structural Analysis of Nickel Doped Cobalt Ferrite Nanoparticles by C-precipitation Method
Nanoparticles of nickel substituted cobalt ferrite (Nix Co1-xFe2 O4 : 0£ X£ 1) have been synthesized by co-precipitation method. Triton x-100 and oleic acid as surfactants were used. Particles size as estimated by the full width half maximum (FWHM) of the strongest X-ray diffraction (XRD) peak were found 17 and 21nm. Their morphology structure have been determined by scanning electron microscop...
متن کاملSynthesis and Characterization of CoBaO2.70 Nanoparticle with Ferromagnetic Properties
In this research we report synthesis of new Barium- Cobalt precursor complex with 2,6- pyridine dicarboxylic acid (dipic).Thecomplex[Ba(H2O)6][Co(dipic)2[(1)has been characterized using spectral methods (FT-IR, UV–Vis),elemental analysis and Cyclic voltammetric (CV) method. Also in this study we report thermal decomposition of inorganic precursor complex of (1).Characterization of the binary ox...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2011